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It is established that oscillations in the low-frequency range are characteristic for a body with a heavy-
rigid spike-shaped inclusion, and corresponding modes mainly occur as flexural deformations of the tip
of the spike, localized close to its vertex.
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1. The oscillations of composite bodies with contrasting properties

Suppose �0 and �1 = �\�0 are plane anisotropic inhomogeneous bodies, for which the outer boundary � = ∂� is smooth, while the
interface of the bodies �0 = ∂�0 is smooth everywhere, apart from the origin of coordinates O, close to which the region �0 is specified by
the inequalities

(1.1)

Here x = (x1,x2) is a fixed system of Cartesian coordinates (they are made dimensionless by scaling: the characteristic dimension of the
body �0 is taken to be unity), and b = b+ + b- and � are positive numbers. In other words, the inclusion �0 has a zero tip angle – a spike,
directed outwards (Fig. 1).

The problem of the oscillations of a composite body � =�0 ∪ �1 has the following matrix form1,2

(1.2)

(1.3)

(1.4)

Here u = (u1, u2)� is the column of displacements, T is the sign of transposition, ui is the constriction of the field u on the body �i,
n is the unit vector (column) of the outward normal of the boundaries ∂�0 and ∂�, Ai is the matrix of the elastic moduli, symmetrical
and positive definite in the set �̄i = �i ∪ ∂�i, �i is the density of the material, which is a smooth positive function in the set �̄i, and

D(∇x)u = (�11,
√

2�12, �22)
�

is the deformation column, where

(1.5)

Since AiD(∇x)ui = (�i
11,

√
2�i

12, �i
22)

�
is the stress column, conditions (1.3) and (1.4) denote that along the contour �0 ideal contact of the

bodies �0 and �1 is assumed, while the outer surface of the body is load-free.
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Fig. 1.

It is well known that the eigenvalues �k of problem (1.2)–(1.4), i.e., the squares of the frequencies of the natural oscillations of the
composite body, form an infinitely large series

(1.6)

The corresponding eigenvectors, i.e., the modes of natural oscillations, which belong to the Sobolev space H1(�), may be subject to the
conditions of orthogonality and normalization

(1.7)

Here (,)� is a scalar product in Lebejgue space L2(�). The eigenvalues are indicated in series (1.6) taking their multiplicities into account;
in particular, the zero eigenvalue has a three-dimensional natural subspace, consisting of rigid displacements (c1 − c0x2, c2 + c0x1)�.

We will assume that the parts �1 and �0 of the composite body possess contrasting properties

(1.8)

Here � > 0 is a small parameter, � ≥ 0, and A10 and �10 are characteristics, comparable in order of magnitude with the characteristics A0 and
�0 of the body �0. In other words, the material of the inclusion �0 is more rigid and heavier than the material of the frame �1. A large
number of publications (Refs 3, 4, etc.) are devoted to investigating the spectra of singularly perturbed problems of this kind. It follows
from the results in Refs 3, 5 and 6, in particular, that in the case of a smooth contour �0 of separation of the bodies for the eigenvalues ��

k
of problem (1.2)–(1.4) with condition (1.8), the following convergences occur

(1.9)

If � > 0, then �0
k

are terms of the series (1.6) of the eigenvalues of the problem of the oscillations of an isolated body �0 with a free
surface

(1.10)

(1.11)

If � = 0, the sequence (1.6) of the limits �0
k

consists of the eigenvalues of two problems: problem (1.10), (1.11) for the body �0 and the mixed
boundary-value problem for the body �1

(1.12)

(1.13)

(1.14)

Note that the conditions for ideal contact (1.3) of the contour �0 are split up as � → +0: the first of them reduces the boundary condition
in displacements (1.14) on the surface of the less rigid body, while the second reduces the boundary condition in the stresses (1.11) on
the surface of the less rigid body. Thus, if relations (1.8) when � = 0 include the last parameter �, the limit as � → +∞ leads to eigenvalue
problems for the isolated bodies �0 and �1 with constrained and free surfaces respectively.

When � > 0 the eigenvalues � of problem (1.12)–(1.14), as before, participate in the formation of the asymptotic structure (� → +0) of
the spectrum of problem (1.12)–(1.14), namely: according to the well-known results,5,6 for any such eigenvalue �∗

n the eigenvalue ��
N(�) is

obtained, subject to the limit

(1.15)
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Nevertheless, the number N(�) of this number in a sequence of the form (1.6) increases without limit as � → +0. In other words, when � > 0
formula (1.9) serves to describe the asymptotic form in the low-frequency band of the spectrum, while formula (1.15) serves to describe a
series of eigenvalues with stable asymptotic forms from the high-frequency band.

It is shown in this paper that the facts, verified in Refs 5 and 6 for smooth separating surfaces, cease to be true for spike-shaped inclusions
when � ≥ 1 (see formula (1.1)). The reasons for the change in the asymptotic behaviour of the eigenvalues of problem (1.2)–(1.4) when � → +0
will be explained in the next section, while the remaining sections are devoted to constructing the asymptotic form of the eigenvalues ��

k
with the additional condition

(1.16)

The question of the asymptotic structure of the spectrum when � = 1 remains open.

2. Spike-shaped inclusions

If the boundary �0 = ∂�0 is Lipschitzian, the Korn inequality

(2.1)

is satisfied (see Refs 7, 2, etc.). Here we have used the notation (1.5), while �0 ⊂ �0 is a subregion of positive area. The norm on the
right-hand side of formula (2.1) generates an energy class E(�0), since the term ||D(�x)u; L2(�0)||2 is equivalent to the elastic energy
functional. According to classical results of the theory of operators in Hilbert space (see, for example, Ref. 8), the compactness of the
imbedding E(�0) ⊂ L2(�0) ensures that the spectrum of problem (1.2)–(1.4) is discrete as well as the other properties of sequence (1.6) of
its eigenvalues.

When there is a spike (1.1) present, the boundary �0 loses the Lipschitzian property, and the Korn inequality (2.1) ceases to be true (see
Ref. 2, Section 3.1). To check this conclusion, consider the sequence of fields u(m) (m = 1,2,. . .) with components

(2.2)

Here � /= 0 is a smooth function with a carrier in the section (d/2,d) and d > 0 is small fixed length. Suppose �0 = �0\Bd, where Bd is a
sphere of diameter 2d and centre O.

It is easy to show that

(2.3)

Consequently, inequality (2.1) with a constant c common for all the fields u ∈ H1(�0) is impossible. Moreover, taking 	 = 1 and m = 1 in
formula (2.2), it can be seen that the finiteness of the norms in the list (2.3) is ensured respectively by the formulae

Hence, the space E(�0) is not contained in the space H1(�0) for any � > 0 and is not contained in the space L2(�0) when � > 1. In view of
the weighted Korn inequality,9 imbedding of E(�0) ⊂ L2(�0) occurs when � = 1, but the first and third relations of (2.3) for the sequence of
fields (2.2) demonstrate that it cannot be compact.

These facts indicate (Ref. 8, Section 10.1) the occurrence of a continuous spectrum of problem (1.2)–(1.4) on the real non-negative
semiaxis, i.e., the convergences cannot even be given a meaning. We further verified that, when condition (1.16) is satisfied, the following
formulae hold

(2.4)

Moreover, an eigenvalue problem is described, the eigenvalues of which act as limits in formulae (2.4) and form the sequence

(2.5)

The exponent −2(1−1/�)/3 of the power of the small parameter � is negative, since � > 1, and so, for any fixed number k, the eigenvalue
��

k
of problem (1.2)–(1.4) for a composite body with a rigid and heavy spike-shaped inclusion approaches zero as � → +∞. In other words,

for small � > 0 the low-frequency band of the spectrum is compressed to a point � = 0 and contains a large number of closely situated
frequencies of natural oscillations.

In the limit problem (� = 0) a continuous spectrum occurs exclusively in the case of heavy rigid spike-shaped inclusions. Thus, if a large
parameter � occurs in relations (1.8), the spectrum of the limit problem � → +∞, consisting of the system of differential equations (1.10)
and the boundary conditions v0 = 0 on �0, remains discrete, thanks to the Dirichlet conditions on the boundary of the regions �0, which
enables as to verify the Korn inequalities and the compactness of the required imbeddings without difficulty. Note also that for any � ∈ (0,
+∞) the stresses and strains for natural oscillations of a composite body �0∪�1 remain bounded at the vertex of the spike. Asymptotic
expansions of the elastic fields were formerly constructed in its neighbourhood10,11 and then proved.12

3. Asymptotic anzatzes

We will introduce the extended coordinates

(3.1)
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Relations (1.1) take the form

(3.2)

Hence, the spike-shaped inclusion becomes thin – we take its “thickness” �1/3 as the new small parameter h and we introduce the superfast
variable

(3.3)

On the set �h, given by formula (3.2), we take the asymptotic anzatzes for solving eigenvalue problems of the theory of elasticity in thin
regions (see Refs 13 and 2, Chapter 7 etc.)

(3.4)

(3.5)

(3.6)

Here ep = (
p1,
p2)� is the unit vector of the xp axis, and M and w = (w1,w2)T, Wq is the number and vector functions to be determined later.
The asymptotic anzatz for the displacement field u1 in the region �1 is matched with anzatz (3.5) and has the form

(3.7)

We substitute expansions (3.5), (3.7) and (3.4) into Eqs (1.2)–(1.4) and we collect coefficients of like powers of the small parameter �,
forming problems for determining the terms of the anzatzes. Because of the change to extended coordinates in formula (3.1), the matrices
Ai of the elastic moduli and the density �i should be frozen at the vertex of the spike, and hence, for brevity, we will write Ai and �i instead
of Ai(O) and �i(O). The vector functions v and vq depend on the variables � in the plane R2 with a semi-infinite cut � = {�:�1 > 0, �2 = 0}, to
which the set �̄h contracts as h → +0. From the first conjugation condition (1.3) and relations (3.5)–(3.7) we derive that

(3.8)

Moreover, the vector function v0 = (v0
1, v0

2)
�

satisfies the following system of differential equations

(3.9)

Here we have taken into account the fact that the left-hand side of system (3.9) serves as a factor for �1−2	/3 on the left-hand side of relation
(1.2) with i = 1, while the inertial term on the right-hand side of this relation requires a higher order �1+ˇ+2(1−1/	)3 according anzatzes (3.4)
and (3.7). The deficient condition of conjugation on the line � will be obtained when constructing the terms of anzatz (3.5).

The following relations are satisfied for the unit vectors n± of the normal to the arcs �±, forming the spike (1.1),

The change to the coordinates � and 
 is accompanied by the following splitting of the matrix differential operators

(3.10)

(3.11)

Note that, in view of proposition (1.8) and expansion (3.7), the right-hand side of the second conjugation condition (1.3) on the arcs �± is
equal to

(3.12)

Thus, substituting the anzatzes (3.5) and (3.4) and the splittings (3.10) into system of differential equations (1.2) with i = 0 and into the
conjugation conditions mentioned, we collect the coefficients of like powers of the small parameter � and arrive at a recurrent sequence of
problems on the cut �(�) with parameter � > 0

(3.13)
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(3.14)

Here q = 0, . . ., 4 and Wj = 0 when j < 0. Note that the coefficients in formulae (3.1) and (3.4) were chosen so that the principal parts of
the inertial terms and the discrepancies (3.12), left by expansion (3.7) in the region �1, fall on the right-hand side of the problem for
determining the term W4 of expansion (3.5) in the region �0, namely, at this step of the algorithm for constructing the asymptotic form,
correctly formulated resultant eigenvalue problems in the theory of plates and columns arise (see Ref. 2, Chapter 7).

It is obvious that the vector functions (3.6) satisfy problems (3.14) when q = 0 and q = 1. When q = 2, in view of relations (3.12) and the
key equality

(3.15)

ensured by the structure of the matrix D from formula (1.5), we have

Consequently, the solution is given by the formula

(3.16)

In problem (3.13) and (3.14) when q = 3 the right-hand sides are

(3.17)

We convert the condition for this problem to be solvable

(3.18)

According to the key equality (3.15), the last formula of (3.11) and relations (3.6) and (3.16), the second component of the integrand in the
integral over the cut �(�) vanishes:

Carrying out the integration of the first component and using all the same formulae, with the exception of equality (3.15), we obtain the
following ordinary differential equation

(3.19)

(3.20)

Since the columns ê1 = (1, 0, 0)� and ĉ = D(e2)(A0
(22))

−1
D(e2)�A0ê1 = R3 are mutually orthogonal, by virtue of definition (1.5) of the

matrix D, the positiveness of the scalar (3.20) follows from the relations

For an isotropic material with shear modulus � and Poisson’s ratio � < ½, the value of (3.20) is equal to a = 4�(1 − 2v)−1.
Equation (3.19) shows that

(3.21)

Here the constant c must vanish – otherwise the functions w1 or w2 will have impermissible singularities O(�−�) or O(�1−�) at the origin
of coordinates.
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We now put q = 4 and develop one of the conditions for problem (3.13), (3.14) with right-hand sides

to be solvable. We similarly obtain, by conversions (3.18), that the equality

is equivalent to the relation

We continue the conversions using formulae (3.6), (3.11), (3.15)–(3.17) and (3.13), (3.14) with q = 3. We have

(3.22)

The calculations are completed. Collecting the relations (3.8), (3.12) and (3.21), (3.22), we form the resulting problem: the system of
differential equations (3.9) is provided with boundary conditions and matching conditions on the semi-infinite section �

(3.23)

(3.24)

4. The spectrum of the resulting problem

Suppose C is the lineal of vector functions, infinitely differentiable up to the boundary in the region R2\ ¯̇ , which possess compact
carriers, vanish in the region of the origin of coordinates and satisfy stable conditions (3.23). The integral identity, which ensures a varia-
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tional formulation of the eigenvalue problem (3.9), (3.23), (3.24), is obtained by multiplying system (3.9) by the vector function V ∈C and
subsequent integration by parts in the regionR2\ ¯̇ and over the ray �, taking into account the conjugation condition (3.24). It has the form

(4.1)

We will denote by H the supplement of the lineal C with respect to the norm, generated by the quadratic form from the left-hand side
of identity (4.1), while L is the supplement of the lineal C∞

c (0, +∞) of the smooth functions with compact carriers on the ray (0, +∞) with

respect to the weighted norm ||�(1+�)/2
2 v, L2(0, +∞)||, produced by the form of the right-hand side of the identity. If v ∈C, the use of the

Korn inequality in a plane, verified by a Fourier transformation, and the known one-dimensional Hardy inequalities on the ray, leads to the
relations

(4.2)

(4.3)

Moreover, versions of the Friedrichs inequality, one-dimensional on the arc (0, 2�) � � (the angular variable) and two-dimensional in a
circle, and also the boundary condition for the components v1 and relation (4.3) for the components v2 give the limit

(4.4)

Finally, formulae (4.2) and (4.4) enable us to process the following norm on a finite part of the arc �

(4.5)

The weighting factors in the norms of the left-hand sides of formulae (4.3) and (4.5) predominate one over the other in the intervals (1,
+∞) and (0,1) respectively. Here 3� − 1>� + 1, in view of requirement (1.16), and so the imbedding H ⊂ L is compact.

Inequalities (4.2)–(4.5) enable us to determine the equivalent weighted norm in the Hilbert space H and to transfer by closure to the
test functions V ∈ H in integral identify (4.1).

Suppose (,)H is the scalar product in H space. We will define the operator K: H → H by the formula

According to the facts presented above, K is a compact operator, and is also non-negative, symmetrical and continuous, and so it is self-
conjugate. Its kernel is identical with the infinite dimensional subspace H0 of the vector fields v ∈ H, which vanish on the ray �. We will
introduce the new spectral parameter � = M−1 and, taking the above notation into account, we will rewrite the integral identity (4.1) as an
abstract equation in the Hilbert space H

(4.6)

By virtue of the properties of the operator K and well-known results of the theory of operators in Hilbert space (see, for example, Ref. 8),
Eq. (4.6) has a point � = 0 of the existing spectrum and an infinitely decreasing sequence of positive eigenvalues

(4.7)

The infinitely increasing sequence (2.5) of eigenvalues Mk = �−1
k

corresponds to problem (4.1) or, which is the same, problem (3.9), (3.23),
(3.24). Note that the eigenvalue � = 0 of Eq. (4.6) has no effect on the spectrum of problem (4.1), since the relations

imply the equality v = 0 for known properties of the solvability of the problem of the theory of elasticity on a plane with friction with rigidly
clamped sides (see, for example, Ref. 14).

The eigen vector functions v(1), v(2), . . . , v(k), . . . of problem (4.1), which correspond to the eigenvalues (4.7), indicated when taking their
multiplicity into account, also belong to the space H, and they may be subject to the conditions of orthogonality and normalization

(4.8)

Since the constant vector does not belong to the space H in view of inequality (4.4), the number M = 0 is not an eigenvalue for problem
(4.1), although the pair v = (0, 1)� and M = 0 formally make both sides of the integral identity vanish.

5. Notes on the justification of the asymptotic

Procedures have been developed (Ref. 2, Chapter 7) for direct and inverse reductions, which enable estimates to be established of the
asymptotic residues with constants, that are independent of the number k of the eigenvalue ��

k
of problem (1.2)–(1.4), i.e., which enable us

to indicate the explicit dependence of the majorant in estimates on attributes of the limit spectrum (2.5). Due to its length, in this paper we
do not give either the form of these procedures or even a formulation of the results, which require a long list of notation. We will confine
ourselves to mentioning only two simple facts and commentaries on them.
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Fig. 2.

First, the asymptotic approximation to the eigenvector function u(k+3) of problem (1.2)–(1.4) is defined by the equations

(5.1)

Here W(k)p are the vector functions of (3.6) and (3.16), constructed with respect to the component �k
2(�) = v(k)

2 (�, 0) of the eigenvector v(k)

of problem (4.1), �, � and 
 are fast variables of (3.1)–(3.3), while � is a cutoff function with a small carrier, equal to unity in the region
of the point O. The normalizing factor �−(2+	)/(6	) is introduced into definition (5.1) to satisfy the principal condition (1.7); in fact, taking
relations (1.1), (1.8), (3.1) and (4.8) into account we obtain

Second, for positive eigenvalues ��
k+3 of problem (1.2)–(1.4), relation (2.4), connecting the spectral frequencies (1.6) and (2.5), is satisfied,

and also shows that the sharp spike defined by inequalities (1.1) and (1.16) on the contact line of the elastic materials with contrasting
properties (1.8) leads to a shift in the spectrum of a composite body in the ultralow frequency band (the quantities ��

k+3 are infinitesimal

when � → +0). Moreover, according to formula (5.1), localization of the modes u(k+3) of the natural oscillations occurs: relations (4.3) and
(4.5) establish attenuation of the fields v(k)(�) as |�| → ∞. Here, by virtue of formulae (3.6) and (5.1), the natural oscillations at ultralow
frequencies mainly occur as a transverse oscillation of the tip of the spike, which excites oscillations of the surrounding material, decaying
at a rate O(|�|−1/2) with distance from the point O (see Ref. 15 in connection with the rate of attenuation).

6. Discussion and open questions

Localization of the modes of natural oscillations in the region of the tip of the broken-off spike agrees completely with the absence of an
eigenvalue M = 0 in problem (4.1): the resultant problem (3.9), (3.25), (3.26) is defined as a whole by the structure of the composite body
in the region of the point O and is not changed if part of the external boundary � is rigidly clamped. In this case the number � = 0 ceases
to be an eigenvalue and all the terms of sequence (1.6) become positive, while formulae (2.4) take the form

(6.1)

The asymptotic analysis and formulation of the results can easily be adapted to other geometrical shapes. Suppose, for example, that
the body �1 has a hard and rigid coating �0 (see relations (1.8)), which is worn, i.e., it is thinned out at the point O (Fig. 2a). If, at the
region of this point, the line �0 coincides with the section of the straight line {x:|x1| < l, x2 = 0}, then, in the neighbourhood of the origin of
coordinates, the coating �0 is defined by the formulae

The resultant eigen-value problem, similar to problem (3.9), (3.23) and (3.24), then takes the form

(6.2)

(6.3)

If the coating is situated only to the left of the point O (Fig. 2b, in which we show the coating with a worn edge), the system of differential
equations (6.2) is provided with conditions (6.3) on the semiaxis {�:�1 > 0, �2 = 0}, and when �2 < 0 the usual boundary conditions in stresses
occur

(6.4)

When � > 1 both eigenvalue problems (6.2), (6.3) and (6.2), (6.4) possess a discrete spectrum of the form (2.5), and formulae (2.4) or
(6.1) hold depending on the type of boundary condition on the remaining part of the boundary. In the case of a coating with a gap, shown
in Fig. 2c, the sequence (2.5) is formed by a combination of the spectra of the two resultant problems, corresponding to two tips.

Localization of the modes of natural oscillations facilitates fracture and provokes peeling of the spike-shaped inclusion �0 from the body
�1. If a crack is formed along one of the arcs �±, to be specific �− (compare Figs. 1 and Fig. 3), the asymptotic structure of the spectrum
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Fig. 3.

(1.6) is only slightly changed: the eigenvalues of the resulting problem, consisting of the system of differential equations (3.9), boundary
conditions (6.3) on the upper face �+ and conditions (6.4) on the lower face �− of the semi-infinite cut �, become the limits Mk in formulae
(2.4). As mentioned in Section 2, the occurrence of cracks along both arcs �± and the complete disengagement of the spike (1.1) deprives
the spectrum of discreteness (see Ref. 8, Section 10.2).

When � = 1 both limit problems (1.10), (1.11) and (3.9), (3.23) have a continuous spectrum on the semiaxis [0, +∞), and it is not known
how the eigenvalues ��

k
, k > 3 behave as � → +0. The question of the asymptotic structure of the spectrum (1.6) of the natural oscillations

of a three-dimensional body with a heavy rigid spike-shaped inclusion (Fig. 4)

remains completely open.

Fig. 4.
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